الأشكال المطلوبة على البناء الضوئى

المطلوب	رقم الصفحة	عنوان الشكل	رقم الشكل
الأسئلة الواردة على الشكل	6	تركيب البلاستيدة	2
الأسئلة الواردة على الشكل	7	تفاعلات البناء الضوئي	3
الأسئلة الواردة على الشكل	8	امتصاص الموجات الضوئية	4
تعيين أجزاء + صياغة أسئلة	9	المسار اللاحلقي	6
رسم	11	المسار الحلقي	7
تعيين أجزاء + صياغة أسئلة	12	حلقة كالفن	8
رسم	15	العوامل المؤثرة	9

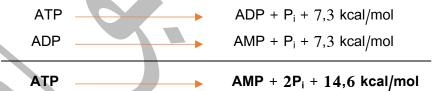
• مصادر الطاقة للكائنات الحية:

- ا**نكربوهيدرات** : **4** كيلو كالوري / غم

- البروتينات : 4 كيلو كالوري / غم

- الدهون " الليبيدات " : 9 كيلو كالوري / غم

• أهمية الطاقة للخلية:


1. بناء المركبات : مثل/ بناء الغلايكوجين

2. عمليات النقل: مثل/ النقل النشط عبر الغشاء الخلوي

3. العمليات الميكانيكية : مثل/ انقباض العضلات

✓ تركيب النيوكليوتيدة في حاملات الطاقة (ATP) :

- أدينين .
- سكر رايبوز .
- 3 مجموعات فوسفات.

وري AMP إلى ATP أمول من عمل 2 مول من المجموع الكلي للطاقة الناتجة من تحلل 2 مول من $29.2 = 14.6 \times 2$

البناء الضوئي

• تعريف عملية البناء الضوئي:

تحويل الطاقة الضوئية " الطاقة الشمسية " إلى طاقة كيميائية يخزنها النبات في سكر الغلوكوز .

- \checkmark الزيادة في كتلة النبات مصدرها \mathbf{CO}_2 الذي يتحول إلى غلوكوز في عملية البناء الضوئى .
 - ✓ تحدث عملية البناء الضوئي في البلاستيدة .
 - ✓ الأكسجين الناتج مصدره الماء .
 - ✓ الطاقة اللازمة لتحلل الماء مصدرها الشمس .
- ✓ جزيئات صبغة الكلوروفيل الخضراء تقوم بامتصاص الطاقة الضوئية وتحولها إلى طاقة كيميائية .

تركيب البلاستيدة:

- ثايلاكويد غشاء خارجي حيز بين غشائي
 - غرانم غشاء داخلي الستروما
- تنقسم تفاعلات البناء الضوئي إلى مرحلتين أساسيتين: 1. التفاعلات الضوئية.

2. التفاعلات اللاضوئية (حلقة كالفن).

التفاعلات اللاضوئية	التفاعلات الضوئية	
لا تحتاج إلى الضوء بشكل مباشر . لأنها تعتمد على نواتج التفاعلات الضوئية (ATP , NADPH)	لا تتم إلا في وجود الضوء	الحاجة إلى الضوء
في ستروما البلاستيدة	في غشاء الثايلاكويد	مكان الحدوث
NADPH , ATP , CO ₂	*ADP ، NADP ، ضوء ، ماء ، كلوروفيل	المواد اللازمة
NADP⁺ ، ADP ، G₃P	NADPH ι ATP ι O $_2$	المواد الناتجة

• امتصاص الموجات الضوئية:

- يمتد طول موجات الضوء المرئي من (380 750) نانوميتر .
- موجات الضوء الحمراء والزرقاء : تعمل أصباغ (كلوروفيل b, a والكاروتين) على امتصاصها بكميات كبيرة .
 - الموجات الضوئية الأخرى: تقوم بامتصاصها صبغات أخرى بكميات قليلة .
 - موجة الضوء الخضراء: تُعكس و لا يتم امتصاصها.

ملاحظة : (من خلال الشكل 4 صفحة 8 من الكتاب المدرسي ، نلاحظ أن :)

- ✓ صبغة كلوروفيل a : تمتص الضوء بأعلى كفاءة تقريباً عند (420 680) نانوميتر .
- ✓ صبغة كلوروفيل b : تمتص الضوء بأعلى كفاءة تقريباً عند (460 640) نانوميتر .
 - √ أقل امتصاص للضوء : تقريباً عند (480 600) نانوميتر .

√ صبغة الكلوروفيل:

- توجد في غشاء الثايلاكوبد .
- تُكسب النبات اللون الأخضر.
- تُمكَّن النبات من القيام بعملية البناء الضوئي .
- يوجد منها عدة أنواع مثل: كلوروفيل b, a حيث تشترك في التركيب الأساسي وتختلف عن بعضها بشكل بسيط.

التفاعلات الضوئية

- يتم فيها تحويل الطاقة الضوئية إلى طاقة كيميائية على شكل (ATP , NADPH) .
 - تحدث في غشاء الثايلاكوبد .
 - يحتوي غشاء الثايلاكويد على صبغة الكلوروفيل.
- تترتب هذه الصبغات الضرورية لعملية البناء الضوئي في نظامين : 1. النظام الضوئي الأول I .
- 2. النظام الضوئي الثاني II .

يتكون كل نظام ضوئى من:

- ♦ أصباغ مختلفة : كلوروفيل b , a وكاروتين .
- ترتبط هذه الأصباغ مع بروتينات ، وتعمل هذه الأصباغ كالقطات تمتص الطاقة الضوئية .
 - يتم تمرير هذه الطاقة إلى مركز التفاعل.
 - ♦ مركز التفاعل: نظام بروتيني يتكون من (جزيئين كلوروفيل a + مستقبل الكترونات أولى).
 - جزيئا كلوروفيل a: تطلق الكترونات منشطة .
 - النظام الضوئي الأول يمتص الضوء بأعلى كفاءة عند 700 نانوميتر .
- النظام الضوئي الثاني يمتص الضوء بأعلى كفاءة عند 680 نانوميتر . ___ (وذلك بسبب اختلاف نوع البروتين المحيط بكل منهما)

تتحول الطاقة الضوئية إلى كيميائية في مسارين للإلكترونات:

- 1. مسار إلكتروني لاحلقي .
 - 2. مسار إلكتروني حلقي .
- أولاً: المسار الإلكتروني اللاحلقي: (من خلال تتبع الشكل 6 صفحة 9 من الكتاب المدرسي)
- 1. يتم فيه إطلاق الإلكترونات المنشطة من مركز تفاعل النظام الضوئي الثاني إلى مركز تفاعل النظام الضوئي الأول 1
- ويعود ذلك لعدة أسباب منها: النظام الضوئي الأول يمتص الضوء بطول 700 نانوميتر، والثاني بطول 680 نانوميتر.
 - يحتوي النظام الضوئي الثاني على أنزيم فصل الماء .
 - 2. ينتج عن هذا المسار: (ATP, NADPH) <u>تستخدم في حلقة كالفن</u>.
 - . O₂ -

تفاعلات هذا المسار:

- امتصاص الضوء .
- $\lim_{n \to \infty} (O_2 | G_2)$.
 - إنتاج ATP .
 - إنتاج NADPH .

امتصاص الضوء :

- تقوم الأصباغ في النظام الضوئي الثاني بامتصاص الطاقة الضوئية .
 - تنتقل الإلكترونات إلى مستوى طاقة أعلى في جزئ الصبغة .
- تنتقل طاقة الإلكترون من جزئ كلوروفيل لآخر حتى تصل إلى مركز التفاعل فيصبح مانح قوي للإلكترونات.
 - تصل الإلكترونات المحملة بالطاقة إلى مستقبل الإلكترونات الأولى الذي له جانبية قوبة للإلكترونات.

♦ انشطار الماء (إنتاج O₂):

مع استمرار امتصاص الضوء ينشط أنزيم انشطار الماء في ثايلاكويدات النظام الضوئي الثاني ويتم فصل جزيئات الماء حسب المعادلة:

انزیم خاص
$$H_2O$$
 \rightarrow $2H^+ + \frac{1}{2}O_2 + 2e^-$

. يتصاعد في الهواء الجوي كناتج نهائي للبناء الضوئي . ${\bf O}_2$

+ H : يستخدم في اختزال نواقل الإلكترونات .

. تقوم بتعويض الإلكترونات المفقودة في النظام الضوئي الثاني . \mathbf{e}^-

❖ إنتاج ATP (تحويل الطاقة الضوئية إلى طاقة كيميائية) :

- يتم ضخ ⁺H الناتجة عن تحلل الماء إلى تجويف الثايلاكويد عبر غشاء الثايلاكويد ليصبح تجويفه موجباً.
 - تندفع ⁺H عبر أنزيم بناء ATP الموجود في غشاء الثايلاكويد مستخدماً طاقة الالكترونات .
 - يتم استخدام هذه الطاقة في ربط ADP مع مجموعة فوسفات لتكوين ATP .

❖ إنتاج NADPH (تحويل الطاقة الضوئية إلى طاقة كيميائية) :

- تصل الإلكترونات إلى مركز تفاعل النظام الضوئي الأول وقد استنفذت طاقتها.
- يتم إعادة تنشيطها عن طريق أصباغ النظام الضوئي الأول التي تمتص الموجات الضوئية فتنتقل الإلكترونات إلى المستقبل الأولي .
 - تنتقل الإلكترونات من ناقل لآخر في سلسلة نقل الإلكترون (عمليات أكسدة واختزال) .
 - تصل الإلكترونات إلى أنزيم مختزل +NADP في النظام الضوئي الأول.
 - يُختزل +NADP إلى NADPH كما في المعادلة :

انزیم مختزل ^{*}NADP + 2H + 2e → NADP + H + H + NADP + NADP + H + NADP + NAD

1 H₂O → 1 NADPH : ملاحظة √

ثانياً: المسار الإلكتروني الحلقي:

- تصل الإلكترونات إلى مركز تفاعل النظام الضوئي الأول وقد استنفذت طاقتها.
 - يتم إعادة تتشيطها عن طريق الأصباغ التي تمتص الطاقة الضوئية .
- تنتقل الإلكترونات إلى المستقبل الأولي في النظام الضوئي الأول ثم إلى سلسلة نقل الإلكترون (السيتوكرومات) .
 - ينتج ATP فقط . لأن حلقة كالفن تستهلك كمية ATP أكبر من NADPH .

مقارنة بين المسار الإلكتروني اللاحلقي والمسار الإلكتروني الحلقي

المسار الإلكتروني الحلقي	المسار الإلكتروني اللاحلقي	وجه المقارنة
النظام الضوئي الأول	النظام الضوئي الأول والثاني	النظام الضوئي المشارك
ATP فقط	O ₂ ، NADPH ، ATP	النواتج
لا يتم تعويضها	النظام الضوئي الثاني: عن طريق انشطار الماء النظام الضوئي الأول: عن طريق النظام الضوئي الثاني	تعويض الإلكترونات
لا يوجد	NADP ⁺	مستقبل الإلكترونات الأخير

حلقة كالفن

- تحدث في ستروما البلاستيدة بسبب وجود الأنزيمات اللازمة لها .
- لا تحتاج إلى الضوء بشكل مباشر لأنها تستخدم الطاقة المختزنة في نواتج التفاعلات الضوئية NADPH, ATP.
 - . (G_3P) ويغادرها على شكل CO_2 ويغادرها على شكل مكر غليسر ألدهايد أحادي الفوسفات -
 - يُستهلك ATP كمصدر للطاقة .
- يُستهلك NADPH كعامل اختزال قوي يضيف إلكترونات ذات طاقة عالية وأيونات هيدروجين لصنع جزيئات السكر (G₃P) .
 - . − : G₃P ✓
 - يعتبر الهيكل الكربوني للمركبات العضوية .
 - ثلاثي الكربون.
 - . جزئ غلوكوز $\frac{1}{2}$
 - مراحل حلقة كالفن : (من خلال تتبع الشكل 8 صفحة 12 من الكتاب المدرسي)
 - 1. مرحلة تثبيت الكربون .
 - 2. مرحلة الاختزال .
 - 3. مرحلة إعادة تصنيع مستقبل CO₂ (RuBP).

المرحلة الأولى: تثبيت الكربون:

- يتم تثبيت ثلاثة جزيئات CO_2 واحداً تلو الآخر .
- أنزيم روبيسكو - 3 مركب سداسي الكربون → 3 RuBP + 3 CO₂ (يبولوز ثنائي الفوسفات } (مركب نشط غير ثابت)
 - ينقسم إلى 2 جزئ حمض غليسرين أحادي الفوسفات 2 جزئ حمض غليسرين أحادي الفوسفات 2

✓ المحصلة / إنتاج : 6 جزيئات حمض غليسرين أحادي الفوسفات

استهلاك : 3 CO₂

:	الاختزال	:	الثانية	لمرحلة
---	----------	---	---------	--------

- نبدأ في هذه المرحلة باستخدام (NADPH , ATP) .
- يحصل كل جزئ من حمض غليسرين أحادي الفوسفات من الجزيئات الستة على مجموعة فوسفات من ATP .
- 6 حمض غليسرين ثنائي الفوسفات → ♦ حمض غليسرين أحادي الفوسفات → 6 حمض غليسرين أحادي الفوسفات
- 6 G₃P + 6 NADPH → كلية " → 6 حمض غليسربن ثنائي الفوسفات

(كلية $\sqrt{G_3P}$: المحصلة $\sqrt{C_3P}$

6 NADPH ، 6 ATP : استهلاك

المرحلة الثالثة : إعادة تصنيع مستقبل CO2 (RuBP : المرحلة الثالثة المرحلة الثالثة المرحلة الم

- يُستخدم جزيء واحد فقط G₃P (كناتج نهائي) لحلقة كالفن لإنتاج الغلوكوز والكربوهيدرات الأخرى .
- جزيئات G₃P الخمسة الأخرى تستخدم في إعادة بناء مركب رابيولوز ثنائي الفوسفات في سلسلة معقدة من التفاعلات يُستهلك خلالها ATP . 3

✓ المحصلة / إنتاج : RuBP

5 G₃P ، 3 ATP : استهلاك

• محصلة حلقة كالفن : G_3P \rightarrow 9 ATP ، 6 NADPH ، 3 CO $_2$ نهائي أو ($\frac{1}{2}$ غلوكوز)

❖ فى حسابات حلقة كالفن :

- ✓ عدد جزيئات ثابتة :
- $\left(\frac{1}{2}\right)$ الغلوكوز –
- (3) RuBP -
- (3) CO_2 -
- (6) NADPH -
- ✓ يجب ملاحظة عدد جزيئات ATP المستهلكة ، حيث نستخدمها حسب المرحلة :
 - في مرحلة إعادة التصنيع (3)
 - في مرحلة الاختزال (6)
 - في حلقة كالفن(9)

✓ يجب ملاحظة عدد جزيئاتG₃P الناتجة :

- (1) بشكل نهائي -
- (6)بشكل كلي(6)
- في مرحلة إعادة التصنيع (5)

العوامل المؤثرة في عملية البناء الضوئي

- تتأثر عملية البناء الضوئي بعدة عوامل بيئية منها: الضوء ، تركيز CO₂ ، درجة الحرارة .
 - عدم توفر أي من هذه العوامل يؤدي إلى وقف عملية البناء الضوئي .
 - (من خلال الشكل 9 صفحة 15 من الكتاب المدرسي ، نتقن رسم المنحنيات) .

أولاً: الضوء:

- يزداد معدل البناء الضوئي بازدياد شدة الضوء حتى يثبت معدل البناء الضوئي .
- (نقطة التشبع الضوئي) : وصول التفاعلات الضوئية إلى حد التشبع في امتصاص الطاقة الضوئية .

ملاحظة:

- في الظلام: لا نشاهد فقاعات الأكسجين.
- تحت ضوء الشمس : نشاهد فقاعات الأكسجين بعدد قليل .
- تحت ضوء الشمس وفي وجود المصباح الكهربائي: يزداد عدد فقاعات الأكسجين.
 - ✓ نستنتج أنه كلما زادت شدة الضوء تزداد كمية الأكسجين الناتجة .

ثانياً: تركيز ثاني أكسيد الكربون:

- يزداد معدل عملية البناء الضوئي بازدياد تركيز CO₂ حتى يثبت المعدل عند الوصول إلى حد معين .
 - استمرار زيادة تركيزه عن هذا الحد لمدة محدودة يؤدي إلى ثبات معدل البناء الضوئي .

ثالثاً: درجة الحرارة:

- يزداد معدل البناء الضوئي مع الزيادة في درجة الحرارة حتى الوصول إلى درجة الحرارة المثلى .
 - (درجة الحرارة المثلى) : يكون عندها المعدل أعلى ما يكون .
- استمرار الزيادة في درجة الحرارة يؤدي إلى انخفاض معدل البناء الضوئي بسبب تحلل المواقع النشطة في الأنزيمات الخاصة بالبناء الضوئي .

ملاحظة:

- في الثلج " حرارة منخفضة " : لا نشاهد فقاعات الأكسجين .
 - عند درجة حرارة 20 : يكون عدد فقاعات الأكسجين قليل .
 - عند درجة حرارة 30 : يزداد عدد فقاعات الأكسجين .
 - عند درجة حرارة 40 : يقل عدد فقاعات الأكسجين .
- ✓ نستنتج أنه عند درجة الحرارة المثلى تزداد كمية الأكسجين الناتجة .

ورقة عمل على البناء الضوئي

:	الصحيحة	الاحاية	اخت	

1. ما كمية الطاقة الناتجة بالكيلو كالوري التي تحتويها وجبة غذائية مكونة من 150 غم كربوهيدرات و 50 غم ليبيدات و 200 غم بروتينات ؟

أ. 1450 د. 1850 د. 2600

2. في وجبة غذائية ما ، كانت كمية الطاقة الناتجة من الكربوهيدرات تساوي 24 كيلو كالوري ، وكمية الطاقة الناتجة من الليبيدات تساوي 45 كيلو كالوري . فما كتلة هذه الوجبة بالغرام ؟ أ. 15 بيلو كالوري . في وجبة غذائية من البروتين تساوي 16 كيلو كالوري . فما كتلة هذه الوجبة بالغرام ؟ أ. 15 بيلو كالوري . وكمية الطاقة الناتجة من البروتين تساوي 16 كيلو كالوري . فما كتلة هذه الوجبة بالغرام ؟ أ. 15 بيلو كالوري . وكمية الطاقة الناتجة من البروتين تساوي 16 كيلو كالوري . فما كتلة هذه الوجبة بالغرام ؟ أ. 15 بيلو كالوري ، وكمية الطاقة الناتجة من البروتين تساوي 16 كيلو كالوري . فما كتلة هذه الوجبة بالغرام ؟

3. تناول أمير وجبة غذائية ، 20% من كتلتها بروتين ، و 40% كربوهيدرات ، و 40% دهون . والسعرات الحرارية الناتجة من هذه الوجبة تساوي 1500 Kcal . فإن كتلة هذه الوجبة بالغرام ؟

أ. 150 ك. 200 ج. 250 ك. 150

4. كم عدد السعرات الحرارية في كوب من الحليب كتلته 300 غرام منها 5% كربوهيدرات ، و 3% دهون ، و 4% بروتين ؟
 أ. 63
 ب. 68
 ب. 68

أي الآتية تعتبر من العمليات الميكانيكية التي تحتاج إلى طاقة ؟

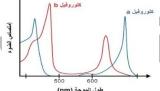
أ. بناء الغلايكوجين ب. انتشار الغازات ج. انقباض العضلات د. تحلل الغلوكوز

6. ما المجموع الكلي للطاقة (بوحدة الكيلو كالوري) الناتجة من تحليل 3 مول من ATP إلى ADP ؟

أ. 43,8 د. 29,2 ج. 29,2 د. 43,8

ماذا ينتج من تحلل 1 مول ATP إلى AMP ?

أ. 7,3 Kcal/mol + 2 Pi . ب 7,3 Kcal/mol + Pi ج. 7,3 Kcal/mol + Pi ب 7,3 Kcal/mol + Pi أ.


8. عملية حيوية في الخلية تحتاج لـ 14,6 كيلو كالوري ، فأي عمليات التحوّل الآتية تنتج هذه الكمية من الطاقة ؟

أ. 1 مول ATP إلى 2 مول ADP إلى 2 مول ATP إلى 2 مول ATP الله 2 مول ATP الله 2 مول ATP الله 2 مول ATP الله 2 مول

ج. 1 مول ADP إلى 1 مول AMP إلى 2 مول ATP الى 2 مول ATP الى 2 مول ATP الى 2 مول ATP الى 2 مول ATP الله عند المتحدد الم

9. كم عدد مولات ATP ، إذا كان المجموع الكلي للطاقة الناتجة من تحلل ATP إلى AMP يساوي 43,8 كيلو كالوري ؟
 أ. 3 ب. 6 ب. 9

10. ما طول الموجات الضوئية التي يتم فيها أقل امتصاص للضوء اعتماداً على الشكل المجاور الذي يمثل امتصاص الموجات الضوئية بواسطة الأصباغ ؟ مستعمر من المعتمر العامر المعتمر المعتمر المعتمر المعتمر المعتمر المعتمر المعتمر المع

700 - 400 .ب 500 - 380 .أ

ج. 600 – 600 د. 600 – 700

11. يلعب جزيئا كلوروفيل a في مركز تفاعل النظام الضوئي دوراً مهماً في عملية البناء الضوئي ، فما الوظيفة الرئيسية لهما ؟ أ. اختزال +NADP ب. إطلاق إلكترونات منشطة ج. تكوين روابط كيميائية د. تحويل الطاقة الضوئية إلى طاقة كيميائية

12. يحتوي مركز التفاعل في النظام الضوئي ؟

أ. جزيئين من كلوروفيل a , b

ج. جزيئين من كلوروفيل b ومستقبل الكترونات أولي

13. من نواتج التفاعلات الضوئية في عملية البناء الضوئي ؟

ب. جزئ من كلوروفيل a, b ومستقبل الكترونات أولى

د. جزيئين من كلوروفيل a ومستقبل الكترونات أولى

	الإلكتروبي اللاحلقي ا	ية إلى طاقة خيميانية في المسار	14. من تواتج تكون الطاقة الصود
NAD+ + ADP .2	ج. NADPH + ATP	ب. NADP+ + ADP	ا. NADH + ATP
	?	فاعل النظام الضوئي الثاني من	15. يتم تعويض الكترونات مركز ت
د. NADPH	ج. ATP	ب. الماء	أ. الأكسجين
		ن عملية البناء الضوئي ؟	16. ما مصدر الأكسجين الناتج مر
NADPH .	ج. ATP	CO_2 .ب	أ. الماء
	أنزيم مختزل ⁺ NADP	ادلة ؟	17. أي الآتية صحيح لإكمال المع
NADP ⁺ + + .		NADPH + H ⁺	
2e ⁻ , 2H ⁺	e ⁻ , 2H ⁺ .ج	e⁻ , H⁺ ،ب	$2e^-$, H^+ .
	ملية البناء الضوئي ؟	للمسار الإلكتروني الحلقي في ع	18. من نواتج التفاعلات الضوئية
د. ATP	ج. NADH + ATP	ب. NADPH	ا. NADPH + ATP
			19. أين تنتج خلايا النبات مركب
د. ستروما البلاستيدة	ج. السيتوسول	ب. حشوة المايتوكندريا	أ. الثايلاكويد
	انبات ؟	مركب كربوهيدراتي ثابت ينتجه اا	20. أي المركبات الآتية يعتبر أول
د. ريبولوز ثنائي الفوسفات	. حمض غليسرين أحادي الفوسفات	ألدهايد أحادي الفوسفات ج	أ. غلوكوز ب. غليسر
		NAI في حلقة كالفن ؟	21. ما المركب الذي يختزله DPH
ىىفات	ب. غليسر ألدهايد أحادي الفوه	سفات	أ. حمض غليسرين أحادي الفو
	د. رايبولوز ثنائي الفوسفات	مفات	ج. حمض غليسرين ثنائي الفوم
	4	?	22. ما الناتج النهائي لحلقة كالفن
د. غليسرين ثنائي الفوسفات	ج. غليسرين أحادي الفوسفات	ت ب. غلوكوز	أ. غليسر ألدهيد أحادي الفوسفا
	ر تبدأ به حلقة كالفن ؟	بزيئات من المركب العضوي الذي	23. كم عدد ذرات الكربون في 6 م
د. 30	ج. 18	ب. 9	5 .1
	ت كناتج نهائي من حلقة كالفن ؟	وسفات في 6 جزيئات G ₃ P نتجد	24. كم العدد الكلي لمجموعات الفو
د. 24	ج. 18	ب. 12	6 .1
	,	ئ غلوكوز واحد من حلقة كالفن [?]	25. أي من الآتية يلزم لإنتاج جزء
د. 24 ATP	12 NADPH .	9 CO ₂ .ب	4 G ₃ P .1
7. 11) في حلقة كالفن ؟	CO_2 جزئ من استهلاك 30 جزئ	26. كم عدد جزيئات الغلوكوز الناة
د. 5	ج. 15	ب. 10	اً. 20
	في حلقة كالفن ؟	ممض غليسرين ثنائي الفوسفات	27. ماذا يحتاج اختزال 12 جزئ د
د. 12 ATP	ج. 12 NADH	12 NADPH .ب.	أ. 18 ATP و NADPH 12
غليسرين ثنائي الفوسفات	مرين أحادي الفوسفات إلى حمض	مستخدمة في تحويل حمض غليه	28. إذا كان عدد جزيئات ATP ال
	?	غلوكوز الناتجة عن حلقة كالفن	48 جزئ ، فما عدد جزيئات ال
48 .2	ج. 24	ب. 8	4 .1
في المسار الالكتروني اللاحلقي ؟	عدد جزيئات الماء التي تم شطرها	شكل نهائي في حلقة كالفن . ما	29. إذا نتج 12 جزئ من G ₃ P ب
د. 12	ج. 16		72 .1
	فكم عدد جزيئات G ₃ P التي تم إننا	~	30. إذا تم إنتاج 24 جزئ من الما
د. 12	ج. 8	ب. 4	اً. 2
عادل أبو نيلة 0599790790	.i 9	يهي 2021	البناء الضوئي العلوم الحياتية توج

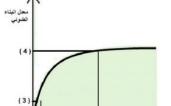
31. إذا كان عدد جزئيات الماء الداخلة في معادلة البناء الضوئي 24 جزئ ، فكم عدد جزيئات NADPH المستهلكة في حلقة كالفن ؟

ب. 24 ج. 36

32. ما الهدف من إضافة بيكربونات الصوديوم 2% للماء عند تنفيذ نشاط قياس معدل البناء الضوئي في ظروف بيئية مختلفة ؟

أ. ضبط تركيز CO₂ ب. ضبط تركيز الأكسجين ج. ضبط درجة PH د. ضبط تركيز الصوديوم

33. عند تنفيذ نشاط دراسة أثر درجة الحرارة على معدل عملية البناء الضوئي ، ما التغير الذي يحدث عند رفع درجة الحرارة إلى 37 م معدل عملية البناء الضائي ؟

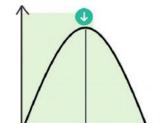

 O_2 يقل عدد فقاعات

$$O_2$$
 أ. يزيد عدد فقاعات

د. يتضاعف عدد فقاعات O_2 بشكل لوغاربتمي

 \mathbf{O}_2 ج. يبقى عدد فقاعات

34. الشكل المجاور يمثل أثر شدة الضوء على معدل البناء الضوئي لنبات ما ، ما الرقم الدال على شدة الضوء عند نقطة التشبع الضوئي ؟



ب. 2

1.

4 .:

ج. 3

35. ما العامل الذي يؤثر على عملية البناء الضوئي حسب الشكل المرفق ؟

 CO_2 ب. ترکیز

أ. شدة الضوء

د. درجة الحرارة

 O_2 ج. ترکیز

1. علل لما يأتى:

- 1. تعربض النبات لموجات الضوء الأحمر والأزرق.
- 2. يؤدي رفع درجة الحرارة عن درجة الحرارة المثلى إلى انخفاض سرعة البناء الضوئي
 - 3. بداية المسار الإلكتروني اللاحلقي تكون عند النظام الضوئي الثاني.
 - 4. يعتبر NADPH عامل اختزال قوي .

2. وضح المقصود بكلٍ من:

- 1. مركز التفاعل .
- 2. نقطة التشبع الضوئي.

من خلال دراستك لعملية البناء الضوئي ، أجب عن الأسئلة الآتية :

- 1. وضح بخطوات متسلسلة المرحلة الثانية (الاختزال) من حلقة كالفن .
 - 2. ارسم العلاقة بين التغير في درجة الحرارة ومعدل البناء الضوئي .
- 3. ما أهمية أيونات الهيدروجين الناتجة من تحلل الماء في المسار الإلكتروني اللاحلقي ؟

4. إذا علمت أنه تم استهلاك 24 جزيئاً من CO₂ في حلقة كالفن ، أجب عما يلي :

- 1. كم جزيئاً ينتج من $\mathsf{G}_3\mathsf{P}$ كناتج نهائي ؟
 - 2. كم جزيئاً ينتج من الغلوكوز ؟
- 3. ما عدد جزیئات ATP و NADPH التي تم استهلاکها ؟

5. في حلقة كالفن ، إذا تم إنتاج 5 جزيئات غلوكوز . احسب ما يلي :

- 1. عدد جزئيات G₃P الكلية الناتجة .
- . عدد جزیئات CO_2 التی تم تثبیتها .
 - 3. عدد جزيئات ATP المستهلكة .
- 4. عدد جزيئات NADPH المستهلكة .

6. إذا علمت أنه تم استهلاك 36 جزيئاً من ATP في حلقة كالفن ، أجب عما يلي :

- 1. كم جزيئاً ينتج من G₃P كناتج نهائى ؟
- 2. ما عدد جزیئات NADPH التی تم استهلاکها ؟
 - ما عدد جزیئات CO₂ التی تم تثبیتها ?
 - 4. كم جزيئاً ينتج من الغلوكوز ؟

7. تحدث تفاعلات تثبيت CO₂ (حلقة كالفن) في ستروما البلاستيدات الخضراء:

- 1. تحدث عن المرحلة الثانية (مرحلة الاختزال).
- 2. في حلقة كالفن إذا تم إنتاج 6 جزيئات من الغلوكوز ، ما عدد جزيئات CO_2 المستهلكة ?
 - 3. ما مصير جزيئات G₃P بعد تصنيعها في حلقة كالفن ؟

8. إذا حدثت حلقة كالفن 4 مرات متتالية:

- 1. أذكر اسم المركب العضوي الذي تبدأ به الحلقة .
- 2. كم عدد جزيئات G₃P الناتجة في هذه الحالة كناتج نهائي ؟
- 3. ما عدد جزيئات ATP و NADPH المستخدمة لإنتاج جزئ غلوكوز ؟
 - 4. ما الجزئ الذي يربط حلقتى كربس وكالفن ؟

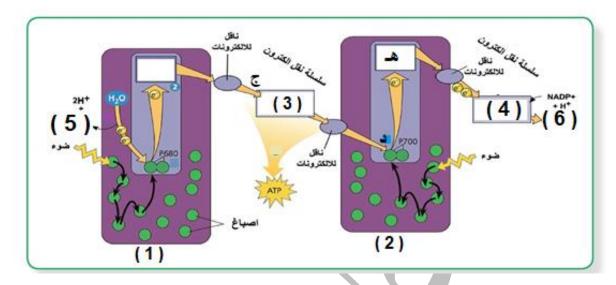
9. إذا كان العدد الكلي لجزيئات G3P الناتجة في مرحلة الاختزال من حلقة كالفن 36 جزئ .

احسب عدد الجزيئات في كل مما يلي:

- 1. الماء H_2O التي تم شطرها في المسار اللاحلقي .
- ثاني أكسيد الكربون CO₂ التي تم تثبيتها في حلقة كالفن .
 - اللازمة لإعادة تصنيع رايبولوز ثنائي الفوسفات.
 - 4. NADPH التي تم استهلاكها .
 - 5. الغلوكوز التي سيتم إنتاجها .

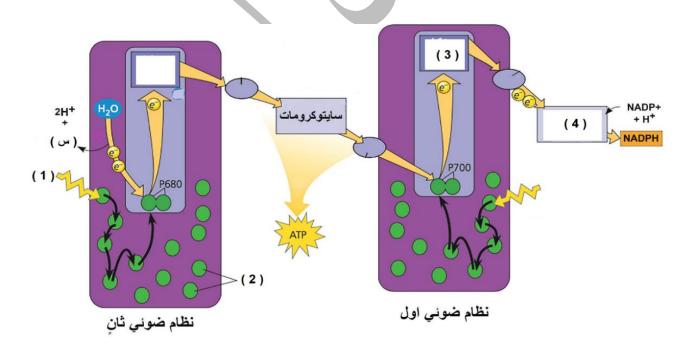
10. في حلقة كالفن إذا تم تحويل 24 جزئ حمض غليسرين ثنائي الفوسفات إلى غليسر ألدهايد أحادي الفوسفات (G₃P) .

- 1. كم عدد جزيئات CO_2 المثبتة ، و (ATP ، NADPH) المستهلكة في هذه المرحلة ؟
 - كم جزيئاً من RuBP سيتم إعادة تصنيعه ؟
- 3. كيف تحافظ حلقة كالفن على ثبات عدد ذرات الكربون في مرحلة إعادة تصنيع مستقبل CO₂ في كل مرة تحدث فيها ؟
 - 4. إذا تم استهلاك جزيئات الغلوكوز الناتجة من حلقة كالفن السابقة في خلية خميرة ، فكم عدد جزيئات CO₂ الناتجة ؟

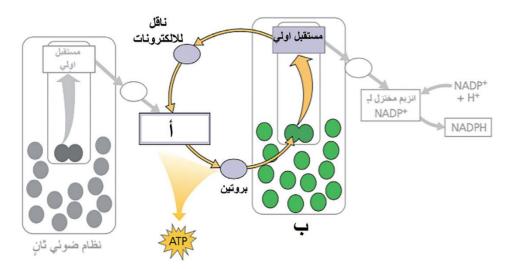

11. تتأثر عملية البناء الضوئي بعدة عوامل بيئية منها الضوء:

- 1. وضح أثر شدة الضوء في معدل البناء الضوئي .
- 2. ارسم منحنى يوضح العلاقة بين شدة الضوء ومعدل البناء الضوئي .

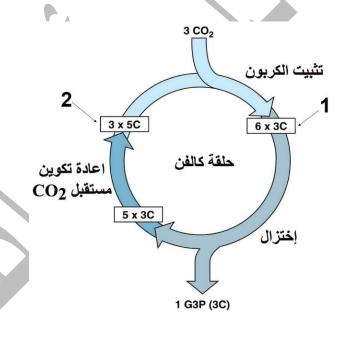
12. تتأثر عملية البناء الضوئى بعدة عوامل بيئية منها درجة الحرارة:


- 1. ارسم منحنى يوضح العلاقة بين درجة الحرارة ومعدل البناء الضوئي .
- 2. وضح أثر الزيادة في درجة الحرارة عن المدى الحراري الملائم على معدل عملية البناء الضوئي .

13. ادرس الشكل الآتي ، ثم أجب عن الأسئلة التي تليه :


- 1. على ماذا تدل كل من الأرقام (1،2،3،4)؟
- 2. عند تحلل 4 جزيئات ماء ، كم ينتج من المواد التي تمثلها الأرقام (5 ، 6) ؟
 - 3. ما أهمية المسار (ج د ه ج)؟

14. ادرس الشكل المجاور الذي يمثل تفاعلات المسار اللاحلقي ، ثم أجب عما يليه :


- 1. إلى ماذا تشير الأرقام (1 ، 2 ، 3 ، 4) ؟
- 2. كم عدد جزيئات المركب المشار إليه بالرمز (س) إذا تم فصل 4 جزيئات ماء ؟
- 3. كم عدد جزيئات مركب G3P الناتجة بشكل نهائي من حلقة كالفن ، إذا نتجت 6 جزيئات NADPH خلال هذا المسار ؟

15. ادرس الشكل الآتي الذي يمثل المسار الإلكتروني الحلقي في التفاعلات الضوئية ، ثم أجب عن الأسئلة التي تليه :

- 1. ما أهمية هذا المسار ؟
- 2. اكتب أسماء الأجزاء المشار إليها بالرموز (أ، ب).
 - 3. كيف يتم تعويض الإلكترونات في هذا المسار ؟
 - 4. بماذا يمتاز المستقبل الأولي ؟

16. ادرس الشكل الآتي الذي يمثل التفاعلات اللاضوئية (حلقة كالفن)، ثم أجب عن الأسئلة التي تليه:

- 1. أذكر أسماء المركبات المشار إليها بالأرقام (1 ، 2) ؟
- 2. إذا تم تثبيت 12 جزيئاً من ${\sf CO}_2$ ، فما عدد جزيئات ADP الناتجة ?
- 3. كم عدد جزيئات NADPH المستخدمة لإنتاج ثلاثة جزيئات غلوكوز ؟

ملاحظة: بالإضافة إلى حل أسئلة الكتاب المدرسي

إجابة ورقة العمل

• اختر:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
ب	ج	ب	7	Ļ	ج	ĺ	7	7	Ļ	ح	ج	ج	Í	ج
30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ج	ĺ	ĺ	ب	7	ح	Í	7	Í	ح	J.	7	7	7	Í

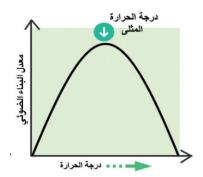
35	34	33	32	31
7	ŗ	ŗ	Í	ب

1. علل:

- 1. تزداد كمية امتصاص الطاقة الضوئية وزيادة معدل البناء الضوئي .
- 2. بسبب تحلل المواقع النشطة في الأنزيمات الخاصة بالبناء الضوئي.
- 3. لأن النظام الضوئي الثاني يمتص الضوء بأعلى كفاءة 680 نانوميتر ، أما النظام الضوئي الأول يمتص الضوء بأعلى كفاءة
 700 نانوميتر . ويحتوي النظام الضوئي الثاني على أنزيم فصل جزئيات الماء .
 - 4. لأنه يضيف إلكترونات ذات طاقة عالية وأيونات هيدروجين لصنع جزيئات السكر (G₃P) .

2. المقصود بكل من:

- 1. مركز التفاعل : نظام بروتيني يتكون من (2 جزيء كلوروفيل a + مستقبل الكترونات أولي) ، جزيئا كلوروفيل a تطلق الكترونات منشطة .
 - 2. نقطة التشبع الضوئي: وصول التفاعلات الضوئية إلى حد التشبع في امتصاص الطاقة الضوئية.


.3

1. مرحلة الاختزال:

- يحصل كل جزئ من غليسرين أحادي الفوسفات من الجزيئات الستة على مجموعة فوسفات من ATP .
- 6 غليسرين ثنائي الفوسفات 6 ATP (Pi) عليسرين أحادي الفوسفات 6 خاصصات 6 غليسرين أحادي الفوسفات
- 6 G₃P → 6 G₃P خليسرين ثنائي الفوسفات
 - (كلية) $6 \; G_3 P$: المحصلة -

استهلاك : NADPH ، 6 ATP :

.2

. يستخدم في اختزال نواقل الإلكترونات . H^+ . 3

.4

1. G₃P النهائي: 8

2. الغلوكوز: 4

48: NADPH , 72: ATP .3

.5

G₃P .1 الكلية : 60

 $30:CO_2.2$

90 : ATP .3

60: NADPH .4

.6

4: النهائي : 4

24: NADPH .2

 $12:CO_2.3$

4. الغلوكوز: 2

.7

1. مرحلة الاختزال: تمت الاجابة عنها سابقاً في سؤال رقم 3.

 $36: CO_2 .2$

 G_3P بعد تصنيعها : يستخدم جزيء واحد فقط G_3P كناتج نهائي لحلقة كالفن لإنتاج الغلوكوز والكربوهيدرات الأخرى ، وجزيئات G_3P الخمسة الأخرى تستخدم في إعادة بناء مركب رابيولوز ثنائي الفوسفات في سلسلة معقدة من التفاعلات يستهلك خلالها G_3P .

.8

1. رايبولوز ثنائي الفوسفات (RuBP) .

4: النهائي G₃P .2

12: NADPH , 18: ATP .3

 CO_2 .4

.9

 $36: H_2O.1$

 $18:CO_2.2$

18 : ATP .3

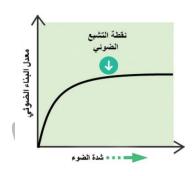
36: NADPH .4

الغلوكوز : 3

.10

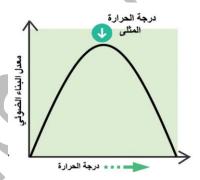
 $12:CO_2.1$

24: NADPH , 24: ATP .2


12: RuBP .3

 $15 \ C = 5 \ C \ X \ 3 \ RuBP$ ، $15 \ C = 3 \ C \ X \ 5 \ G_3 P$ عن طریق : استهلاك 4

 $4:CO_2.5$


.11

- 1. يزداد معدل البناء الضوئي بازدياد شدة الضوء حتى يثبت معدل البناء الضوئي .
 - .2

.12

.1

2. يؤدي إلى انخفاض معدل البناء الضوئي بسبب تحلل المواقع النشطة في الأنزيمات الخاصة بالبناء الضوئي.

.13

- 1. (1) النظام الضوئي الثاني ، (2) النظام الضوئي الأول ، (3) السيتوكرومات ، (4) أنزيم مختزل +NADP
 - 4: NADPH(6), 2: كسجين (5).2
 - 3. المسار الحلقي: إنتاج ATP فقط

.14

- 1. (1) الضوء ، (2) أصباغ ، (3) مستقبل أولي ، (4) أنزيم مختزل ⁺NADP
 - $2 = O_2$.2
 - G₃P جزئ واحد

.15

- 1. إنتاج ATP فقط
- 2. (أ) سيتوكرومات ، (ب) النظام الضوئي الأول
 - 3. لا يتم تعويض الإلكترونات
 - 4. له جاذبية قوية للإلكترونات

.16

- Rubp (2) ، الفوسفات ، عليسرين أحادي الموسفات ، (1) .1
 - ADP 36 .2
 - NADPH 36 .3